Posted Sun Nov 22, 2015 9:09 am
Giải phương trình,hệ phương trình
1. $\left\{\begin{matrix}
\dfrac{1}{\sqrt{x}}+\dfrac{y}{x}=\dfrac{2\sqrt{x}}{y}+2& & \\
y(\sqrt{x^2+1}-1)=\sqrt{3x^2+3}& &
\end{matrix}\right. $
2. $\left\{\begin{matrix}
x^2+\sqrt{x}=2y& & \\
y^2+\sqrt{y}=2x& &
\end{matrix}\right. $
3. $x^2-3=\dfrac{2}{1+\sqrt{x+2}} $ (x thuộc đoạn [-2;2] )
4. $\left\{\begin{matrix}
x^2+2x=\dfrac{121}{9}-27^{\dfrac{x}{2}}& & \\
x^2+y^2+xy-3x-4y+4=0& &
\end{matrix}\right.
$
5. $\left\{\begin{matrix}
x^2+y^2+z^2=2010^2& & \\
x^3+y^3+z^3=2010^3& &
\end{matrix}\right. $
6. $24x^2-60x+36-\dfrac{1}{\sqrt{5x-7}}+\dfrac{1}{\sqrt{x-1}}=0 $
7. $\sqrt{3x^3+2x^2+2}+\sqrt{-3x^3+x^2+2x-1}=2x^2+2x+2 $
8. $\left\{\begin{matrix}
2(2x+1)^3+2x+1=(2y-3)\sqrt{y-2}& & \\
\sqrt{4x+2}+\sqrt{2y+4}=6& &
\end{matrix}\right. $
9. $\left\{\begin{matrix}
2y^3+2x\sqrt{1-x}=3\sqrt{1-x}-y& & \\
y=2x^2-1+2xy\sqrt{1+x}& &
\end{matrix}\right. $
10. $\left\{\begin{matrix}
x+\dfrac{3x-y}{x^2+y^2}=3& & \\
y-\dfrac{x+3y}{x^2+y^2}=0& &
\end{matrix}\right. $
11. $\left\{\begin{matrix}
x^4-2x=y^4-y& & \\
(x^2-y^2)^3=3& &
\end{matrix}\right. $
12. $\left\{\begin{matrix}
2009x+2010y=(x-y)^2 & & & \\
2010y+2011z=(y-z)^2& & & \\
2011z+2009=(z-x)^2& & &
\end{matrix}\right. $
13. $\left\{\begin{matrix}
(x+2)^2+(y+3)^2=-(y+3)(z+x-2) & & & \\
x^2+5x+9z-7y-15=-3yz& & & \\
8x^2+18y^2+18xy+18yz=-84x-72y-24z-176& & &
\end{matrix}\right. $
14. $\left\{\begin{matrix}
2z(x+y)+1=x^2-y^2 & & & \\
y^2+z^2=1_2xy+2zx-2yz& & & \\
y(3x^2-1)=-2x(x^2+1)& & &
\end{matrix}\right. $
Được sửa bởi ๖ۣۜTFM_๖ۣۜDragon ngày Sun Nov 22, 2015 9:25 pm; sửa lần 1. (Reason for editing : Chuyển \frac thành \dfrac)